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the 15 degree approximation. The formulation of the prob-
lem isA new absorbing boundary technique for the paraxial wave equa-

tions is proposed and analyzed. Numerical results show the effi-
ciency of the method. Q 1997 Academic Press
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1. INTRODUCTION
where v satisfies the 15 degree paraxial equation

Paraxial equations are now a classical tool in seismic
processing. They are partial differential equations provid- 2ig­zv(x, z) 2 ­xxv(x, z) 5 d(x 2 xs)) d(z). (2)
ing approximate solution to the one-way wave equation.
Each equation is labelled by an angle that describes the Ŝ(g) is the Fourier transform of the source trace, xs its
cone of propagation directions that are correctly modelled. location, ts the time of explosion, and the velocity is set to
Claerbout [5] was the first to introduce fifteen degree and one. Equation (2) is a Schrödinger-like equation. Its solu-
forty-five degree type equations for the extrapolation of tion is (cf. Appendix A)
2D seismic data. Since then, many authors have developed
the concept and the use of paraxial equations has been
extended to various situations like heterogeneous or 3D v(x, z) 5 ! 2i

8fgz
e2ig((x2xs)

2/2z), Ï2i 5 e2i(f/4). (3)
media. However, the treatment of the artificial lateral
boundaries, that is of great practical importance, has not

In [2], a transparent condition is derived; it is shown thatgiven rise to a satisfactory answer up to now. The reason
the following Dirichlet to Neumann relation holds,is probably that usual absorbing boundary conditions are

not very well suited to this type of equations: as will be
shown below, the decomposition of the propagation opera- (­xv 1 Ï2ig Ï­z v)/x50 5 0, (4)
tor into out-going and in-going parts makes the non-local
operator Ï­z appear which is difficult to handle numeri- where Ï­z is the half derivative operator
cally. In this paper, we propose to adapt a novel technique,
introduced for electromagnetism recently [4]. This tech-

Ï­zw 5
1
f

­z Ez

0

w(s)

Ïz 2 s
ds. (5)nique consists in designing an absorbing layer called per-

fectly matched layer (PML) which possesses the astonishing
propertyofgenerating noreflectionat the interfacebetween

Condition (4) is first order with respect to the variablethe free medium and the artificial absorbing medium. This
z and thus can be employed as a boundary condition forproperty allows us to use a very high damping parameter
practical computation. The main drawback is due to theinside the layer and consequently a small layer length while
non-local character of the operator Ï­z: a convolution inachieving a quasi-perfect absorption of the waves.
z at the artificial boundary must be performed [12]. An
alternative method, proposed by Di Menza [8], consists in2. THE FIFTEEN DEGREE PARAXIAL EQUATION
substituting in (4) some approximation of Ï­z by ratio-
nal fractions,We start with the migration of a single seismic trace

(point source) by the simplest paraxial equation, say,

Ï­z P OL
l51

aL
l

­z

­z 1 dL
l

, (6)
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where al , dl , l 5 1, ..., L, are real numbers characterizing Now, we look for a partial differential equation satisfied
by ṽ. Fromthe approximation and L some integer large enough to

obtain a good approximation. The absorbing boundary
condition thus obtained can be written as a system of partial
differential equations involving auxiliary functions (one

­2v
­x2 (x 5 x̃) 5 S­x̃

­xD21 ­

­x SS­x̃
­xD21 ­ṽ

­xD (x), (13)
per fraction),

we get

5(­xv)/x50 1 Ï2ig SOL
l51

aL
l v/x50 2 OL

l51
aL

l dL
l wlD5 0,

­zwl 1 dL
l wl 5 v/x50 , ;l 5 1, ..., L.

(7)
2ig­zṽ 2

ig
ig 1 s

­x S ig
ig 1 s

­xṽD5 d(x 2 xs) d(z).

(14)Numerical experiments show that a large L is required to
achieve good absorption of the waves at the boundary.
Comparing this with the wave equation, where first or Equation (14) is the sought layer model for the Schrödinger
second order conditions often give good results, we find equation (2). It consists in the simple modification
that the case of the Schrödinger equation appears to be
more difficult. The reason is that the symbol of the opera- ­

­x
R

­

­x̃
5

ig
ig 1 s(x)

­

­x
, (15)tor Ï­z , say Ïik , does not fit very well with rational or

polynomial functions at infinity, kz R y (compare with
igÏ1 2 k2

x/g2 g R y for the wave equation).
in the initial equation. This change does not alter the solu-We present now an alternative to absorbing boundary
tion in the area of interest (v 5 ṽ for x , 0). This importantconditions based on the construction of an appropriate
property is confirmed by a plane wave analysis; the planeabsorbing boundary layer model. The idea comes from a
wave solutions ofreinterpretation of Bérenger’s PML as a change of variable

in the complex plane (see Appendix B and [14]). For de-
signing our PML model, we consider a positive function

2ig­zṽ 2
ig

ig 1 s
­x S ig

ig 1 s
­xṽD5 0 (16)s(s) (s(s) will play the role of a damping factor) and

assume

are sought in the form
s(x) 5 H0 for x , 0

$0 for x . 0.
(8)

Hṽ(x, z) 5 (e2ikxx 1 Reikxx)eikzz, x , 0

ṽ(x, z) 5 Te2ikxx̃eikzz, x . 0,
(17)We define the change of variables,

x̃ 5 x 2
i
g
Ex

0
s(s) ds. (9) where kx is assumed to be positive (right-going plane

wave). T is the transmission coefficient and R the reflection
coefficient. Equation (16) is satisfied if the dispersion re-and consider the function
lation

ṽ(x, z) 5 v(x̃, z) 5 ! 2i
8fgz

exp S2ig
(x̃ 2 xs)2

2z D. (10)
k2

x 5 22gkz , kx . 0, (18)

Note that condition s(s) ; 0 for s , 0 implies is fulfilled. Coefficients T and R are determined by the
interface conditions: because the quantity on which the

ṽ(x, z) 5 v(x, z), ;x , 0. (11) operator ­x is applied in Eq. (16) must be continuous (cf.
Appendix C), we have

ṽ only differs from v inside the absorbing layer x . 0 where
it is really damped as

5
ṽ(01, z) 5 ṽ(02, z)

S1 2 i
s(01)

g D21

­xṽ(01, z) 5 S1 2 i
s(02)

g D21

­xṽ(02, z),
uṽ(x, z)u 5 ! 1
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exp S2

(x 2 xs)
z

Ex

0
s(s) dsDR 0,

(12)
as x R y. (19)



166 FRANCIS COLLINO

and thus Let us come back to the point source problem (i.e.,
problem (21) with d(x 2 xs) on the right hand side,
xs , 0). The solution can be evaluated by the image princi-
ple of geometrical optics and is given by5

T 5 1 1 R

S1 2 i
s(01)

g D21

(2ikx)
­x̃
­x

(01)T 5 2ikx(1 2 R)

ṽ(x, z) 5 ! 2i
8fgz

exp S2ig
(x̃ 2 xs)2

2z D2 ṽr(x, z). (25)

⇒ HT 5 1 1 R

T 5 1 2 R
⇒ HT 5 1

R 5 0.
(20)

ṽr is the mirror image of v with respect to the plane
hx 5 dj. It is the reflected wave due to the Dirichlet Bound-

The reflection coefficient is zero and the transmission is ary condition and is given by
total for all right-going plane waves. In this sense the layer
is perfectly matched.

For practical considerations, we cannot work with the ṽr(x, z) 5 ! 2i
8fgz

exp S2ig
(x̆ 2 (2d 2 xs))2

2z D
(26)

absorbing half-space x . 0, but we must deal with a finite
length absorbing layer. If d is the length of the layer, the
system of equations is closed with a Dirichlet boundary x̆ 5 x 2

i
g
Ex

2d
s̆(s) ds, s̆(s) 5 Hs(s), s , d

s(2d 2 s), s . d,condition
5
or

52ig­zṽ(x, z) 2
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ig 1 s
­x S ig

ig 1 s
­xṽ(x, z)D5 0, x , d

ṽ(x 5 d, z) 5 0. ṽr(x, z) 5 ! 2i
8fgz

exp S2i
g
2z Sx 1 xs 2 2d

(27)(21)

1 i Ed

0

s(s)
g

ds 1 i Ed

x

s(s)
g

dsD2D,The same plane wave analysis now gives

and, in particular if x # 05
ṽ(x, z) 5 (e2ikxx 1 Reikxx)eikzz, x , 0

ṽ(x, z) 5 (1 1 R)
e2ikx(x̃2d̃) 2 eikx(x̃2d̃)

eikxd̃ 2 e2ikxd̃
eikzz, 0 , x , d,

uṽru 5 ! 1
8fgz

exp S24
d
z
Ed

0
s(s) dsD

(28)
(22)

where kx , kz satisfy (18). Because ṽ as given by (22) is exp S2
(x 1 xs)

z
Ed

0
s(s) dsD.

continuous, R is determined by the second transmission
condition

This implies

2ikx(1 1 R)
eikxd̃ 1 e2ikxd̃

eikxd̃ 2 e2ikxd̃
5 2ikx(1 2 R), (23)

if z ? 0, (v 2 ṽ)(x, z; xs)

(29)
5 ṽr R 0 uniformly in x, xs # 0 as Ed

0
s(s) ds R y.or

R 5 2e22ikxx̃(d) ⇒ uRu 5 e22(kx/g)ed

0
s(s) ds. (24) In other words, the reflection due to the finite length of

the layer can be made arbitrarily small by choosing s(s)
large enough.The value of R in (24) is the same expression as the one

From a mathematical point of view, the PML model canobtained by Bérenger for the electromagnetic problem [4].
be seen as an evolution variational problemIn this case, R is the reflection coefficient of the ‘‘layer’’

in the sense that the reflection coefficient at x 5 0 is zero,
the reflection coefficient at x 5 d is 21, and R describes
the percentage of the original wave amplitude after two 5

Find u : z []0, Z[ R u(., z) [ V such that ;v(x) [ V,

2ig
d
dz SE u(x, z)v(x)

dx
d(x)D5 2 E ­xu(x, z)­xv(x) d(x) dx,passes through the PML. The specificity of the wave propa-

gation model only appears in the expression for kx , as
given by the dispersion relation. (30)
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where V is the set of functions v(x) such that both uvu2 and tion of the PML model is very easy to perform: we change
the system (33) intou­xvu2 are integrable with v(d) 5 0 (it can be shown shat

functions of V are continuous). Problem (30) is initialized
at z 5 0 by an initial condition

u(z 5 0) 5 u0 [ V. (31) 5
­zṽ 5 ig O blw̃l , x # d, z . 0

g2w̃l 1
ig

s(x) 1 ig
­x S ig

s(x) 1 ig
­xc̃lD5 0, x # d, z . 0

c̃l 5 alw̃l 1 ṽ, x # d, z . 0

c̃l(d, z) 5 0, z . 0,

An approximation of problem (30), (31) can be constructed
by considering a sequence of finite dimensional subspaces
of V, say Vh , with

(34)

<
h.0

Vh 5 V, Vh9 , Vh , if h9 , h, that is, we use formally the substitution

­

­x
R

­

­x̃
5

ig
ig 1 s(x)

­

­x
. (35)and replacing V by Vh , u0 by its projection uh

0 onto Vh . It
is not difficult to prove that the solution, uh(z), exists and
is the solution of ordinary differential equations with con-

As the closed form for the Green function is not known,
stant coefficients. Unfortunately, no estimation is easily

in contrast to the 15 degree approximation, cf. (3), we
available except when d(x) is independent of x (see Appen-

cannot proceed as above to prove that ṽ R v for x # 0
dix D). The technical difficulty is the existence of the imagi-

as e s(s) ds increases toward infinity. However, the plane
nary part of d making the usual technique apparently use-

wave analysis describing what happens at a boundary still
less. So, passing to the limit as h R 0 is still an open

holds. Indeed, all the required arguments for proving that
problem and further investigations are necessary to estab-

the reflection coefficient vanishes do not depend on the
lish existence and uniqueness.

particular structure of the equation governing the wave:
the form of the dispersion relation does not play any role.

3. EXTENSION TO HIGHER ORDER Let us make this assertion precise: the particular plane
PARAXIAL EQUATIONS wave solutions are

The higher-order paraxial equations are constructed
w̃l 5

k2
x

g2 2 alk2
x
? ṽ, (36)from approximations of the square root by rational func-

tions [1]

where ṽ is given by (22) and kx is a solution of

Ï1 2 t 5 1 2 OL
l51

bl
t

1 2 alt
. (32)

kz 5 2 OL
l51

bl
k2

x

g2 2 alk2
x
. (37)

L is the order of the approximation. The case L 5 1,
The condition of transmission (i.e., the continuity ofb1 5 1/2, a1 5 0 corresponds to the previously studied
(ig/(ig 1 s))­xcl at x 5 0) provides the reflection coeffi-fifteen degree approximation. When (32) is used to evalu-
cientate the operator Ï1 1 g22­xx , Eq. (2) must be replaced by

R 5 2e2ikxx̃(d) ⇒ uRu 5 e22(kx/g)ed

0
s(s) ds, (38)

5­zv 5 ig O blwl , x [ R, z . 0

g2wl 1 ­xxcl 5 0, cl 5 alwl 1 v, x [ R, z . 0.
(33)

which is nothing else than (24).
A direct inspection of Eq. (38) would lead us to pick

the largest possible s that would allow us to obtain a
reflection as weak as desired. However, this nice propertyIn order to ensure uniqueness, an appropriate radiation

condition at infinity or a limiting absorption (i.e., replace is no longer true when the discretization scheme for numer-
ically solving the equations is used. As a matter of fact,g by g 1 i« and pass to the limit « R 02, cf. [10]) must

be used. In addition, an initial condition at z 5 0, say and as we will see below, the discretization of the equations
induces a shift between the points located near the inter-v(x, z 5 0) 5 v0(x) is supposed to be given. The construc-
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face and thus the layer is only approximately matched. The by piecewise linear finite elements, the mass matrix being
a linear combination between the exact matrix and thenumerical dispersion induces a reflection at the interface

which is roughly proportional to s Dx. We are facing the lumped mass matrix (cf. Appendix E).
The scheme is analyzed by a classical discrete plane wavesituation known from classical layer models, cf. [13], where

a balance has to be found between choosing s not too analysis: particular solutions of scheme (41) with zero right
hand side are sought in the formhigh (this would create a reflection at the free-medium/

absorbing-medium interface) and picking s not too low
(this would yield an insufficient damping of the waves uj 5 e2ikxj Dx 1 Reikxj Dx, j # 0. (44)
returned by the Dirichlet conditions).

For j , 0 the scheme reduces to4. DISCRETIZATION OF THE PERFECTLY
MATCHED LAYER

g2l Dx2((1 2 2c)uj 1 c(uj11 1 uj21))
We begin with a very simple 1D model and consider a

right side PML model for the equation 1 (uj11 2 2uj 1 uj21) 5 0. (45)

g2lu 1 ­xxu 5 f, x [ R, (39)
Substituting (44) into (45), kx is found to satisfy the numeri-
cal dispersion relationnamely

4
Dx2 sin2 Skx Dx

2 D5 lg2 S1 2 4c sin2 Skx Dx
2 DD. (46)5g2lu 1

ig
ig 1 s

­x S ig
ig 1 s

­xuD5 f, x # d

u(x 5 d) 5 0,

(40)

We distinguish between two situations. First, we assume
s to be constant and d rejected to infinity; later we willwhere l is a parameter, s(s) ; 0 for s , 0, and f(s) ; 0
investigate the case of a finite length layer. In the first case,for s $ 0.
the solution satisfiesLet Dx be a discretization step and c a positive parameter

less than 1/4 (the parameter c is introduced to improve
the approximation of the second derivative operator). The g2l Dx2((1 2 2c)uj 1 c(uj11 1 uj21))
discretized scheme is

1 d2
s(uj11 2 2uj 1 uj21) 5 0, ;j . 0, (47)

g2l S1 2 2c
2 S 1

dj21/2
1

1
dj11/2

D uj 1
c

dj11/2
uj11 1

c
dj21/2

uj21D
with

1
1

Dx Sdj11/2
uj11 2 uj

Dx
2 dj21/2

uj 2 u
j21

Dx D5 fj , (41)
ds 5

ig Dx
s Dx 1 ig Dx

, (48)

where
and the solution can be found in the form

dj11/2 5
ig

ig 1 sj11/2
, sj11/2 5

1
Dx

E( j11) Dx

j Dx
s(s) ds. (42)

uj 5 (1 1 R)e2iks
x j Dx, j $ 0, (49)

This scheme can be viewed as the discretization of the
withvariational formulation

lg2 E 1
d(x)

u(x)))w(x) dx 4
Dx2 sin2 Sks

x Dx
2 D5 lg2 S1 2 4c sin2 Sks

x Dx
2 DD S1 1

s Dx
ig DxD2

.

(50)
2 E d(x)­xu(x)­xw(x) dx 5 E f(x)w(x) dx, (43)

It is easy to verify that each equation of the scheme is
;w(x) [ H1(] 2y, d[), w(d) 5 0, d(x) 5

ig
ig 1 s

,
satisfied at nodes j ? 0 (i.e., in the homogeneous parts) as
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soon as the two dispersion relations (46) and (50) are nents are zero except for the first one which is proportional
to u21 .fulfilled. Then, the remaining equation at j 5 0,

Let us define

g2l S1 2 2c
2 S 1

ds

1 1D u0 1 cu21 1
c
ds

u1D
1

1
Dx Sds

u1 2 u0

Dx
2

u0 2 u21

Dx D5 0

(51)
M 5 3

c1 d̃1/2

d̃1/2 c2 d̃3/2

d̃3/2 ... ...

...

... d̃nl21/2

d̃nl21/2 cnl21

4 , F 5 3
1

0

.

.

.

0

4 ,with u0 5 1 1 R, u21 5 eikx Dx

1 Re2ikx Dx, u1 5 (1 1 R)e2iks
x Dx,

provides the reflection coefficient R:

(56)
withR 5 2

c0 1 d̃1/2e2iks
x Dx 1 d̃21/2eikx Dx

c0 1 d̃1/2e2iks
x Dx 1 d̃21/2eikx Dx

c0 5 g2l Dx2 1 2 2c
2 S 1

ds

1 1D2 ds 2 1 (52) 5cj 5 g2l Dx
1 2 2c

2 S 1
dj11/2

1
1

dj21/2
D2 dj11/2 2 dj21/2

d̃j11/2 5 dj11/2 1 g2l Dx2 c
dj11/2

.d̃1/2 5 ds 1 g2l Dx2 c
ds

, d̃21/2 5 1 1 g2l Dx2c.
(57)

Thanks to MAPLE, we get

The equations inside the layers are solved according to
R 5 2

l

16
(s Dx 2 2ig Dx)s Dx(1 1 2Ïlcs Dx) 1 O(Dx4),

(53) Û 5 t[u0 , u1 , ...., unl21] 5 2d̃21/2u21M21 ? F,
(58)

which confirms that the discretization induces a dispersive d̃21/2 5 1 1 clg2 Dx2

numerical reflection, the numerical layer is only approxi-
mately matched, and s must not be picked too high.

(note that dj11/2 ; 1 when j , 0).In the case of a layer with a finite length and composed
Now if we look for a solution in the formof nl layers characterized by

uj 5 e2ikxj Dx 1 Re1ikxj Dx, j # 0, (59)s̃ 5 (s1/2, s3/2 , ..., snl21/2), (54)

where kx satisfies (46), we immediately obtain from (58)the equations

(1 1 R) 5 u0 5 2d̃21/2
tF ? M21 ? Fu21

(60)
5 2d̃21/2

tF ? M21 ? F(e2ikxDx 1 Re1ikxDx),5
g2l S1 2 2c

2 S 1
dj11/2

1
1

dj21/2
D uj 1

c
dj11/2

uj11 1
c

dj21/2
uj21D

1
1

Dx Sdj11/2
uj11 2 uj

Dx
2 dj21/2

uj 2 uj21

Dx D5 0, (55)

dj11/2 5
ig Dx

ig Dx 1 sj11/2 Dx

or

R 5 R(l, g Dx; s̃ Dx) 5 2
1 1 d̃21/2(tF ? M21 ? F)e2ikxDx

1 1 d̃21/2(tF ? M21 ? F)e1ikxDx
.

(61)are now verified for j # nl 2 1 with the additional condition
unl

5 0. This system of nl equations can be viewed as a
tridiagonal linear system. The unknowns are u0 , u1 , ...., Formula (61) gives the numerical reflection coefficient

for the finite length layer.unl21 and the second term is a vector all of whose compo-
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FIG. 1. Numerical reflection coefficient (in Db, i.e., 20 log10 R) versus the number of points per wavelength for three different values of R0 ,
R0 5 1022 (240 db), 1023 (260 db), 1024 (280 db).

tion coefficient can be. Finally, we remark that, when NTo illustrate the influence of the discretization on the
is fixed, the smallest reflection coefficient is not necessarilyreflection coefficient, the following example is consider,
obtained for the largest value of sc . This emphasizes the
important role played by the numerical dispersion.

Let us return to the higher-order paraxial equations de-
scribed in (33). The discretization of the problem is based
upon the following principles, cf. [9, 6]:5

l 5 1 (1D Helmoltz equation)

d 5 2f/g (layer length 5 1 wavelength)

s(x) 5 sc(x/d)2, for x . 0 (parabolic law)
(62)

sc 5
3
2d

Log S 1
R0
D , R0 5 1022, 1023, 1024

• Use splitting techniques to reduce the L fractions
problem to a series of L problems with a unique fraction.

• Integrate in z with an implicit and second order
accurate Crank–Nicolson scheme for the z direction (clas-(sc is picked such that the reflection coefficient for the
sical explicit schemes in z are unstable). We consider z ascontinous model as given by (24) with kx 5 g is equal to
an evolution variable.R0). In Fig. 1, one sees the variation of the numerical

• Perform the discretization in x through a variationalreflection coefficient (61) versus the number of points per
approach using a uniform mesh and a finite elements/finitewavelength N 5 2f/(g Dx) (which is equal, in this case,
differences method.to the number of points in the layer as the length layer is

one wavelength). First, it can be verified that the numerical For simplicity, we restrict the problem to the case L 5 1,
reflection coefficient converges to R0 , the value derived a1 ; a, b1 ; b. The integration scheme is
for the continuous model, when the number of points per
wavelength increases: our scheme is found to be consistent.
Second, the convergence of the scheme appears to be
slower for the small values of R0 than for the largest one:
the theoretical reflection coefficient R0 is approximately 5

vk11 2 vk

Dz
5 igwk11/2

g2Mwk11/2 2 Kc k11/2 5 0

c k11/2 5 awk11/2 1
vk11 1 vk

2
.

(63)
reached for N P 5 when R0 5 0.01, N P 10 when R0 5
0.001, and N P 35 when R0 5 0.0001. Of course, the larger
the number of points in the layer is, the smaller the reflec-
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TABLE I

Values of the 5 Optimal Damping Coefficients s Dx versus the Number of Points per Wavelengths N 5 (2fg Dx)21 and
Mean Value of the Reflection Coefficient Modulus

N 5 5 N 5 7 N 5 10 N 5 15 N 5 20 N 5 30 N 5 40

s Dx(1) 0.185 0.167 0.267 0.360 0.383 0.395 0.405
s Dx(2) 0.652 0.521 0.474 0.376 0.440 0.5058 0.540
s Dx(3) 1.539 1.273 1.265 0.981 0.793 0.853 0.890
s Dx(4) 3.424 2.953 2.715 2.664 2.508 2.207 2.095
s Dx(5) 9.909 9.249 8.886 8.257 7.995 7.885 7.830

0.0043 0.0050 0.0063 0.0085 0.0105 0.0126 0.01321
100O

100

i51
uRui

Note. These values correspond to the 45 degree paraxial equation with c 5 0.1 and u1 5 90 degree.

In these expressions, vk 5 (vk
j ) denotes the approximate

value of the unknown ṽ at depth k Dz and lateral position
j Dx (vk is supposed to be piecewise linear in x). wk11/2 5 5

vk11 2 vk

Dz
5 ig

b
a

c k11/2 2 ig
b
a

vk11 1 vk

2

g2Mc k11/2 2 aKc k11/2 5 g2M
vk11 1 vk

2
.

(65)
(wk11

j ) and c k11/2 5 (c k11/2
j ) are defined similarly. M and

K are the matrices arising from the variational equalities

The discrete harmonic solutions of (65) are sought in
the formg2E 1

d(x)
wk11/2v̂ dx 2Ed(x)­xc

k11/2­xv̂ dx 5 0, ;v̂ [ P1

(64) H vk 5 ve2ikzk Dz

c k11/2 5 Ce2ikz(k11/2) Dz.
(66)

[9, 6] with the assembly described in Appendix E. It is
possible to eliminate the unknown wk11/2 and to get Substituting (66) into (65) yields

FIG. 2. Reflection coefficient versus the angle u (ktrue
z 5 g cos u) for different choices of the number of points per wavelength. Each curve

corresponds to the 5 coefficients of the PML given in Table I.
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We have used the famous software M2QN1 [11] to find
the minima associated to the values5

22
Dz

sin Skz Dz
2 D v 5 g

b
a

C 2 g
b
a

cos Skz Dz
2 D v

g2MC 2 aKC 5 g2 cos Skz Dz
2 DMv,

(67)

or 5
a 5

1
4

, b 5
1
2

(45 degree approximation)

u 1 5 90 degree ⇒ l1 5
4
3

P 5 100

c 5 0.1 (Claerbout’s choice).

(75)

v 5 gb S2a
2

Dz
sin Skz Dz

2 D1 bg cos Skz Dz
2 DD21

C, (68)

and

The remaining parameter N 5 (2fg Dx)21 has beeng2lMC 2 KC 5 0, (69)
taken equal to 5, 7, 10, 15, 20, 30, 40. As a result, the
optimal values, shown in Table I, depend weakly on N,with
the number of points per wavelength; and the mean value
of the reflection coefficient is in any case less than 2%.

l(kz) 5
2(2/Dz) tan(kz Dz/2)

bg 2 a(2/Dz) tan(kz Dz/2)
. (70) Furthermore, we note that this coefficient increases with

the number of points per wavelength.
In this expression, kz may be intepreted as the wave num- Figure 2 shows the values of the modulus of the reflec-
ber in the z direction seen from a system of coordinates tion coefficient
moving downward in the positive z direction with velocity
1. In other words UR Sl(u),

1
2fN

; s̃ Dx(N)DU , (76)
kz 5 ktrue

z 2 g 5 g(cos(u) 2 1), (71)

versus the angle of propagation u for different number ofwhere u is the angle between the propagation direction
points per wavelength.and the vertical z-direction. Then

Note that, as there is no damping for the propagation
at incidence along z, it is only natural that we find a higher

l 5
2kz

gb 2 akz
1 O(Dz2) P

1 2 cos(u)
a 1 b 2 a cos(u)

. (72) coefficient for the low values of the angle.
In Fig. 3 are shown the values of the modulus of the

reflection coefficientEquation (69) is exactly the numerical scheme we have
studied previously (see (40)). The reflection induced by
the boundary is characterized by the reflection coefficient UR Sl(u),

1
2fN

; s̃ Dx(7)DU , (77)R(l, g Dx; s̃ Dx) given by (61). It is natural to choose s̃
in order to minimize R for all the angles of incidence
contained in the incoming waves, say as a function of the angle of propagation u for various

numbers of points per wavelength and a fixed value of
s̃* 5 Arg min El1

0
uR(l, g Dx; s̃ Dx)u2 dl,

(73)
s Dx. The 5 corresponding values for s Dx are determined
through the optimization process with 7 points per wave-
length. In this case, although the values for s Dx are notl1 5

1 2 cos(u 1)
a cos(u 1) 2 a 2 b9 optimal when the number of points per wavelengths is not

7, the reflection coefficient remains in the vicinity of some
or further, in order to get a discretized criterium, few per cents for the angles larger then 10 degrees (note

that a wave associated with u equal to 10 degrees corre-
sponds to an incidence with respect to the normal of the
absorbing layer of 80 degrees).

These results are somewhat paradoxical: the paraxial5
s̃*(N) 5 Arg min J(N, s Dx)

J(N; s Dx) 5
1
P OP

i51
UR Sli , g Dx 5

1
2fN

; s DxDU2

,

li 5
1 2 cos((i/P)u 1)

a cos((i/P)u 1) 2 a 2 b
.

(74) equation is designed for waves propagating close to the z
direction, but to such waves correspond a large reflection
coefficient (see Eq. (24)). The problem is that the waves
propagating vertically are grazing waves when viewed from
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the artificial boundary. We will return to this point in the The velocity is 1000 m/s and v0 , the initial condition at
z 5 0, is a gaussian point source located in xs and given asnumerical experiments.

5. NUMERICAL EXPERIMENTS

5v0(x) 5 e2((x2xs)/64)2
? S̃(g)

S̃(g) 5 i
g
gs

e2g2/g2
seigts.

(80)In order to test the method, we have performed the
migration of a point source. With a 45 degree paraxial
equation, the problem can be written as

The space steps Dz and Dx have been chosen equal to
12.5 meters such that one has a discretization of 11 points
per wavelength for the frequency corresponding to the5find m(x, z) such that

m(x, z) 5
1
f
Ey

0
Re(v(x, z, g)e2igz) dg,

(78)
highest value of S̃(g). We have considered 150 points in
the x direction and 100 points in the z direction. The time
of the explosion occurrence, ts , is 82% of 50 Dz/c and the

where frequency of the signal, 2fgs , is 10/ts . Finally, the integra-
tion over the frequencies has been performed by adding
120 regularly spaced samples up to (8/3)(2fgs).

In Fig. 4, we have represented four different migrated
sections for two locations of the source and two boundary
conditions. The first boundary condition corresponds to a
Dirichlet boundary condition on both sides of the computa-
tional domain. The second one is computed using the PML5

­zv 5 i
g
2c

w, uxu # L, z . 0

g2 sc 1 ig
igc

w 1 ­x S igc
sc 1 ig

­xcD5 0, uxu # L, z . 0

c 5
1
4

w 1 v, uxu # Lz . 0

c(6L, z) 5 0, z . 0

v(x, z 5 0) 5 v0 , uxu , L.

model with 5 layers of length Dx for the left side of the
model. The 5 corresponding values for s Dx are deter-
mined through the optimization process described pre-
viously with 10 points per wavelength. The idea is to take
the best coefficients for the frequency corresponding ap-(79)

FIG. 3. Reflection coefficient versus the angle u, for different choices of the number of points per wavelength. The 5 coefficients of the PML
are given in Table I in the column N 5 7.
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FIG. 4. Migration of a point source with the 45 degree paraxial equation. The source is located at 50 Dx (top) or 15 Dx (bottom). At the left
boundary is a Dirichlet boundary condition (left) or an absorbing layer composed with 4 extra nodes (right).

proximatively to the maximum of S̃(g) (note that in this reflection can occur) and compared with m. The following
error norms are consideredexperiment s has been chosen independently of the fre-

quency).
We note that the strong reflection due to the Dirichlet

condition cannot be seen any more with the absorbing «2 5 SO
i
O
k

(mk
i 2 m̃k

i )2D1/2

?SO
i
O
k

(m̃k
i )2D21/2

(81)layer. Even when the source is located rather close to the
boundary (15 nodes in x), the PML layer allows us to

«y 5 sup
i,k

umk
i 2 m̃k

i u ?Ssup
i.k

um̃k
i uD21

,obtain a pretty good result (see also the third column of
Table II for quantitative measures). Furthermore, as only 4
extra nodes have been necessary to construct the numerical

where the indexes i and k cover 1, ..., L/h and 1, ..., Z/Dz.absorbing layer, the cost induced by the PML is really mar-
Table II gives the error for different choices of the fiveginal.
coefficients s(i), i 5 1, ..., 5, and two locations of the source.In Fig. 5, similar experiments have been performed with
In any case the error is roughly several tenths of a percentthe 60 degree paraxial equation. The same 5 damping coef-
while the error for the Dirichlet condition is from 6 toficients as for the 45 degree paraxial equation have been
29%. These errors have to be compared with those due toused. As a result, the use of the PML allows us to eliminate
the dispersion of the scheme. The reference solution hasthe reflected wave, although the coefficients were not de-
been recomputed with all the discretization steps dividedsigned for the 60 degree paraxial equation.
by a factor of 6 thus allowing us to estimate the relativeMore generally, we have performed several experiments
error of the dispersion effects. We have found a relativewith values of s(i) Dx, i 5 1, ..., 5, other than the optimal
error of 1.1% for «y and 0.4% for «2 which is of the sameones and we have found that the method is not very sensi-
magnitude as the error due to the PMLs.tive to the precise value of the coefficients. It is mainly the

We address now the question of the ability of the PMLorder of magnitude of the coefficients that is important.
to absorb the waves propagating close to the vertical. ForTo quantify the results, a reference solution m̃ has been
this, new experiments with a domain of interest of 32 pointscomputed in the large domain ]2L 1 2xs , L[3]0, Z[ (the

left boundary has been moved from 0 to 2L 1 2xs where no in the x direction and 200 points in the z direction are
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TABLE II In Fig. 6, we compare the solution computed in a large
domain (320h) with solutions computed in smaller do-L2 Norm («2) and Ly Norm («y) of the Relative Error Due to
mains, namely 42h or 52h. On both boundaries a Dirichletthe Lateral Boundary Condition
condition or a PML condition with 5 or 10 points in the

Source x5 5 50h layer is imposed. The coefficients of the layer are the opti-
mized coefficients for N 5 5 (see Table III). We can seeDirichlet N 5 7 N 5 10 N 5 15 N 5 20 N 5 40
that the spurious reflections due to the Dirichlet boundary

«2 6.4% 0.21% 0.17% 0.16% 0.16% 0.17% condition are greatly attenuated. This is confirmed by the
«y 4.8% 0.15% 0.11% 0.08% 0.08% 0.10% evaluation of the errors in Table IV. The error drops from

98% (Dirichlet) to 3% (5h PML) or 0.4% (10h PML).Source x5 5 15h
Finally, we test the ability of the method to deal with

Dirichlet N 5 7 N 5 10 N 5 15 N 5 20 N 5 40 heterogeneous media. The test, graciously realized by
E. Bécache et al. [3], is the migration of a point source in«2 22% 0.71% 0.64% 0.64% 0.62% 0.54%
a media with velocity law described in Fig. 7. The improve-«y 29% 1.04% 1.00% 1.11% 1.12% 1.12%
ment between the Dirichlet condition (Fig. 8, left) and

Note. Comparison between the Dirichlet boundary condition and the the PML technique (Fig. 8, right) demonstrates that the
PML with the cofficients optimized for a specific value of N, the number method can also handle heterogeneous media very effi-
of points per wavelength.

ciently.

6. CONCLUSION
considered. In such a domain, waves propagate quasi-verti-
cally and dispersion effects are attenuated allowing us to We have designed and analyzed a new absorbing layer
use half as many points per wavelength as in the previous model for the wide angle paraxial equations. The method
experiments (the frequency of the signal, 2fgs , is chosen is based on an interpretation and an extension of the Bé-

renger perfectly matched layers for Maxwell’s equations.equal to 20/ts).

FIG. 5. Migration of a point source with the 60 degree paraxial equation. The source is located at 50 Dx (top) or 15 Dx (bottom). At the left
boundary is a Dirichlet boundary condition (left) or an absorbing layer composed with 4 extra nodes (right).
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FIG. 6. Comparison between the reference solution computed in the domain 320h 3 200 Dz (top) and three solutions computed in a 42h 3

200 Dz (bottom left and bottom center) or a 52h 3 200 Dz (bottom right) domain. The source is located in the center of each domain. Bottom left
corresponds to a Dirichlet boundary condition, bottom center to a 5h PML, and bottom right to a 10h PML.

The model is parameterized by a damping function whose zation. We obtain an optimal damping function by min-
imizing this coefficient for all the angles of propagation.optimal choice is linked to the discretization step. A dis-

crete plane wave analysis, which determines the reflection The efficiency of the method has been demonstrated by
numerical experiments. Finally, let us note that the samecoefficient, shows the important role played by the discreti-

TABLE IVTABLE III

L2 Norm («2) and Ly Norm («y) of the Relative ErrorValues of the Optimized Coefficients Associated to N 5 5 for
Due to the Lateral Boundary Condition5h and for 10h PML

Dirichlet s5 s10N 5 5 N 5 10

«2 82% 2.3% 0.41%s Dx(1) 5 0.185 s Dx(1) 5 0.0186 s Dx(6) 5 1.23108
«y 92% 2.6% 0.37%s Dx(2) 5 0.652 s Dx(2) 5 0.08473 s Dx(7) 5 1.8979

s Dx(3) 5 1.539 s Dx(3) 5 0.22194 s Dx(8) 5 2.96433
Note. Comparison between the Dirichlet boundary condition and thes Dx(4) 5 3.424 s Dx(4) 5 0.44532 s Dx(9) 5 4.73401

PML with the coefficients optimized for N 5 5. The length of the rights Dx(5) 5 9.909 s Dx(5) 5 0.77180 s Dx(10) 5 10.0447
and left layers is 5h and 10h.
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Then

v(x, z) 5 w(x, z) 5
1

2g
E(x, z) 5 ! 2i

8fgz
e2ig(x2/2z)1hz.0j .

(87)

APPENDIX B: BÉRENGER’S PML AND
CHANGE OF VARIABLE

In [4], Bérenger proposes a new layer model, called a
FIG. 7. A 2D smooth heterogeneous medium. perfectly matched layer (PML) for electromagnetic waves.

In this appendix, we show how Bérenger’s PML can be
viewed as a complex change of variable applied to Max-

method can be used for the artificial condition in the well’s system.
Schrodinger equation. This is precisely the subject of [15] For the 2D Maxwell equations, the design of the PML
that deals with the beam propagation method for applica- in the region x . 0 is as follows. The propagation of a
tions in optics. transverse electric wave is governed by («0 5 e0 5 1)

APPENDIX A: DERIVATION OF THE
ELEMENTARY SOLUTION

5
­Hz

­t
5

­Ex

­y
2

­Ey

­x

­Ey

­t
5 2

­Hz

­x
,

­Ex

­t
5

­Hz

­y
.

(88)According to [7], the elementary solution of

i­tE 1 DE 5 2d(x) d(t) (82)

is The construction of an absorbing layer in the right half
space (i.e., in the region x . 0) is performed in two steps.
First, we split the magnetic component into two parts as

E(x, y) 5 ! i
4ft

ei(x2/4z)1ht.0j . (83)

Hz 5 Hzx 1 Hzy (89)
We look for the solution of

and rewrite Eqs. (88) as
2ig­zv 2 Dv 5 d(x) d(z), (84)

w 5 v satisfies 5
­Hzy

­t
5

­Ex

­y
,

­Hzx

­t
5 2

­Ey

­x

­Ey

­t
5 2

­Hz

­x
,

­Ex

­t
5

­Hz

­y
.

(90)2ig­zw 1 Dw 5 2d(x) d(z), (85)

or

At this stage, Eqs. (89) and (90) are equivalent to the
initial problem.i­z/2gw 1 Dw 5 2d(x) d S z

2gD 1
2g

. (86)

FIG. 8. Migration of a filtered point source in a 2D smooth heterogeneous medium.
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In a second step, a damping factor s(x) (s(x) 5 0 for
Ĥz(x, z) 5

i
4

H(1)
0 (gÏx̃2 1 y2)x , 0) is introduced in each equation wherever the normal

derivative operator ­x appears: S⇒uHz(x, z)u p
C

Ïgx̃
e2ex

0 s(j) djx R 1yD ,

where H(1)
0 is the Hankel function of the first kind.5

­Hzy

­t
5

­Ex

­y
,

­Hzx

­t
1 sHzx 5 2

­Ey

­x

­Ey

­t
1 sEy 5 2

­Hz

­x
,

­Ex

­t
5

­Hz

­y
.

(91) This is one key to understanding the nice properties of
the PML model. This model is simply obtained using the
complex change in variables (95) applied to the original
equation. The right line x [ R is moved into a path in

System (91) is Bérenger’s PML model. the upper complex plane. The existence of an analytical
If we look for the stationary solutions with frequency extension of the Green’s function in the upper complex

g, we get plane allows us to properly define Ĥz and the exponential
decay of this extension ensures the damping effect.

APPENDIX C: DERIVATION OF THE
INTERFACE CONDITIONS5igĤzy 5

­Êx

­y
, (ig 1 s(x))Ĥzx 5 2

­Êy

­x

(ig 1 s(x))Êy 5 2
­Ĥz

­x
, igÊx 5

­Ĥz

­y
, Ĥz 5 Ĥzx 1 Ĥzy . Let us suppose that s(x) is a positive function, vanishing

for x , 0 and continous for x . 0. At x 5 0, s(x) is
(92) supposed to have a right limit not necessarily equal to 0,

We can rewrite this system of equations with the only lim
xR01

s(x) 5 s(01) $ 0.
unknown Ĥz . We have

In Section 1, we were interested in determining the particu-
lar solutions to(ig)2(Ĥzx 1 Ĥzy) 2 ig

­Êx

­y
1

(ig)2

ig 1 s(x)
­Êy

­x
5 0,

2ig­zv 1
ig

ig 1 s
­x S ig

ig 1 s
­xvD5 0. (96)or

A first problem is to make sense of this equation as s is
g2Ĥz 1

­2Ĥz

­y2 1
ig

ig 1 s(x)
­

­x S ig
ig 1 s(x)

­Ĥz

­x D5 0. (93) not continuous at x 5 0. We first rewrite Eq. (96) as

2ig
d(x)

­zv(x, z) 1 ­x(d(x)­xv)(x, z) 5 0, d(x) 5
ig

ig 1 s(x)
,In the region where s is zero, we recover the well known

property that the magnetic field of a non-stationary 2D
(97)transverse electric wave satisfies the Helmoltz equation.

Inside the layer, we remark that the PML model consists
and we call the solution of (97) a function v such thatin the simple substitution

(1) v(x, z) is continuous in x and z.

(2) The x derivative of v(x, z) exists and is a continu-­

­x
R

­

­x̃
5

ig
ig 1 s(x)

­

­x
, (94) ous function in x ? 0 with right and left limits at x 5 0.

(3) v(x, z) satisfies (97) in the sense of distributions.

where With this definition, the function w(x, z) 5 d(x)­xv(x, z)
is a continuous function except possibly at x 5 0 where it
possesses right and left limits, so the second x-derivative

x̃ 5 x 2
i
g
Ex

0
s(j) dj, (95) in (97) makes sense as a distribution derivative. For such

a function, we have

in the initial equation, whereas the tangential derivatives
­xw 5 (­xw)(x, z)1V1(x, z) 1 (­xw)(x, z)1V2(x, z)

are left unchanged. A direct inspection shows that the
Green function for Eq. (93) is 1 (w(01) 2 w(02)) d(x),



PERFECTLY MATCHED ABSORBING LAYERS 179

where 1V1 is 1 on V1 5 h(x, z), x . 0j and 0 on V2 5 where R stands for the real part. Now, we have
h(x, z), x , 0j, 1V2 5 1 2 1V1 , and d(x) is the Dirac distri-
bution.

Now, the function R Sig
d2

0
D5 2s0 $ 0, R S d2

0

4igD5 1/(8s0) $ 0,

which implies5
ṽ(x, z) 5 (e2ikxx 1 Reikxx)eikzz, x , 0

ṽ(x, z) 5 Te2ikx ex

0 d21(j) djeikzz, x . 0,

with k2
x 5 22gkz , kx . 0,

(98)

d
dz SE uuhu2 dxD ,

d
dz SE u­xuhu2 dxD# 0

has the required regularity when T 5 1 1 R (continuity).
It satisfies

⇒
SE uuhu2 dxD (z) # SE uu0

hu2 dxD2ig
d(x)

­zṽ 1 ­x(d(x)­xṽ) 5 (d(01)­xṽ(01, z)

(99) SE u­xuhu2 dxD (z) # SE u­xu0
hu2 dxD .2 d(02)­xṽ(02, z)) d(x).

Thus, ṽ satisfies Eq. (97) in the distributional sense if
and only if These estimations allow us to use the standard Galerkin

method and to prove that uh has a limit, as h goes to zero,
and is continuous in z with values in V (cf. [7]). Of course,d(01)­xṽ(01, z) 5 d(02)­xv(02, z). (100)
the same estimations hold for every solution of problem
(30) which establishes uniqueness. Let us remark that thisThis condition is the second transmission condition.
result is very poor because we used the fact that s was
constant in the whole domain. It is of interest in that itAPPENDIX D: ESTIMATIONS FOR THE CASE
points out the importance of the positiveness of s for thed(x) 5 Cste

well-posedness of the problem.
We consider the approximation of problem (30), (31)

obtained by taking a constant value for s0 , namely
APPENDIX E: ASSEMBLY OF THE MATRICES FOR

THE DISCRETE PROBLEM

This appendix is devoted to the evaluation of5
Find uh : z []0, Z[ R u(., z) [ Vh such that ;vh(x) [ Vh,

2ig E ­zuh(x, z)vh(x)
dx
d0

5 2E ­xuh(x, z)­xvh(x)d0 dx,

uh(z 5 0) 5 u0
h [ Vh , with d0 5

ig
ig 1 s0

, s0 $ 0. Mi, j 5 E
R

v̂i(x)v̂j(x)
dx

d(x)
,

(104)
(101)

Ki, j 5 E
R

­xv̂i(x)­xv̂j(x)d(x) dx,

Substituting for vh successively by the conjugate of uh and
­zuh , we get

where d(x) is assumed constant on each interval Ii11/2 5
]i Dx, (i 1 1) Dx[ 5 ]xi , xi11[, and v̂i is the hat function

5
d

dz SE uuhu2 dxD 5
1
2

R SE ­zuhuh dxD
5 2R S d2

0

4igD E u­xuhu2 dx, (102)

1

υi(x) =
xi – 1 xi + 1xi




ˆ

We start from

5
d

dz SE u­xuhu2 dxD 5
1
2

R SE ­xuh­x­zuh dxD
5 2R Sig

d2
0
D E u­zuhu2 dx, (103) E

R
v̂i(x)v̂j(x)

dx
d(x)

5 O
m

1
dm11/2

E
Im11/2

v̂i(x)v̂j(x) dx.
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An exact computation gives

5
E

R
d(x)­xv̂i(x)­xv̂i(x) dx 5

1
Dx

(di11/2 1 di21/2)

E
R

d(x)­xv̂i(x)­xv̂i61(x) dx 5 2
di61/2

Dx

E
R

d(x)­xv̂i(x)­xv̂j(x) dx 5 0 if ui 2 ju . 1.

(109)5
E

Im11/2

v̂i(x)v̂i(x) dx 5
Dx
3

if m 5 i, i 2 1

E
im61/2

v̂i(x)v̂i61(x) dx 5
Dx
6

if m 5 i

E
Im11/2

v̂i(x)v̂j(x) dx 5 0 elsewhere,

(105)
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